Posts Tagged ‘total solar eclipse’

30 July

Is “Observing Total Solar Eclilpse on Aug. 21, 2017” Part of Your Bucket List?

Share

Dear Friends, Visitors/Viewers/Readers,

(Please click on red links & note magenta)

Below, is a re-post from our sister publication, Windermere Sun (of July 25, 2017):

A total solar eclipse occurs when the Moon completely covers the Sun’s disk, as seen in this 1999 solar eclipse. Solar prominences can be seen along the limb (in red) as well as extensive coronal filaments.(Photo Attribution: I, Luc Viatour, Presented at: WindermereSun.com)

Dear Friends & Neighbors,

[mc4wp_form id=”12402″]

Chart for Solar Eclipse (Attribution: Eclipse Predictions by Fred Espenak, NASA’s GSFC, Presented at: WindermereSun.com)

Map of Solar Eclipse (presented at: WindermereSun.com)

Map of the Solar Eclipse 2017 USA (created with Eclipse 2017 Android App, Geodata from OpenStreetMap (Attribution: Wolfganag Strickling, Presented at: WindermereSun.com)

Windermere Blue Sunset (credit: Windermere Sun-Susan Sun Nunamaker)

(Please click on red links & note magenta)

How many of you have “observing a Total Solar Eclipse” on your bucket list? Did you know that a total solar eclipse will occur on Monday, August 21, 2017? It will be visible in totality only within a band across the entire contiguous United States ( covering: Oregon, Idaho, Montana, Wyoming, Nebraska, Kansas, Iowa, Missouri, Illinois, Kentucky, Tennessee, Georgia, North Carolina, South Carolina). The last time a total solar eclipse was visible across the entire contiguous United States was during the June 8, 1918 eclipse.

Map of the Solar Eclipse 2017 USA (created with Eclipse 2017 Android App, Geodata from OpenStreetMap (Attribution: Wolfganag Strickling, Presented at: WindermereSun.com), covering: Oregon, Idaho, Montana, Wyoming, Nebraska, Kansas, Iowa, Missouri, Illinois, Kentucky, Tennessee, Georgia, North Carolina, South Carolina

A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon’s apparent diameter is larger than the Sun’s, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth’s surface, with the partial solar eclipse visible over a surrounding region thousands of kilometers wide. This eclipse is the 22nd of the 77 members of Saros series 145, which also produced the solar eclipse of August 11, 1999. Members of this series are increasing in duration. The longest eclipse in this series will occur on June 25, 2522 and last for 7 minutes and 12 seconds.

The total eclipse will have a magnitude of 1.0306 and will be visible from a narrow corridor through the United States. It will be first seen from land in the US shortly after 10:15 a.m. PDT at Oregon’s Pacific coast, and then it will progress eastward through Salem, OR, Casper, WY, Lincoln, NE, Kansas City, Nashville, TN, Columbia, SC, and finally Charleston, SC. Total Solar Eclipse will darken skies all the way from Oregon to South Carolina, along a stretch of land about 70 miles (113 kilometers) wide. People who descend upon this “path of totality” for the big event are in for an unforgettable experience. A partial eclipse will be seen for a greater time period, beginning shortly after 9:00 a.m. PDT along the Pacific Coast of Oregon.

The longest duration of totality will be 2 minutes 41.6 seconds at about 37°35′0″N 89°7′0″W in Giant City State Park, just south of Carbondale, Illinois, and the greatest extent (width) will be at 36°58′0″N 87°40′18″W near the village of Cerulean, Kentucky, located in between Hopkinsville, KY and Princeton, KY. This will be the first total solar eclipse visible from the Southeastern United States since the solar eclipse of March 7, 1970, which was only visible from Florida.

 

 


A partial solar eclipse will be seen from the much broader path of the Moon‘s penumbra, including all of North America, northern South America, Western Europe, and some of Africa.

The August 2017 eclipse will be the first with a path of totality crossing the US’s Pacific coast and Atlantic coast since 1918. Also, its path of totality makes landfall exclusively within the United States, making it the first such eclipse since the country’s independence in 1776. (The path of totality of the eclipse of June 13, 1257, was the last to make landfall exclusively on lands currently part of the US.

If you are interested in observing this event (total Solar Eclipse), below, in italics, is excerpt from “Eye Safety During Solar Eclipses” from NASA:

The Sun can be viewed safely with the naked eye only during the few brief seconds or minutes of a total solar eclipse. Partial eclipses, annular eclipses, and the partial phases of total eclipses are never safe to watch without taking special precautions. Even when 99% of the Sun’s surface is obscured during the partial phases of a total eclipse, the remaining photospheric crescent is intensely bright and cannot be viewed safely without eye protection [Chou, 1981; Marsh, 1982]. Do not attempt to observe the partial or annular phases of any eclipse with the naked eye. Failure to use appropriate filtration may result in permanent eye damage or blindness!

Generally, the same equipment, techniques and precautions used to observe the Sun outside of eclipse are required for annular eclipses and the partial phases of total eclipses [Reynolds & Sweetsir, 1995; Pasachoff & Covington, 1993; Pasachoff & Menzel, 1992; Sherrod, 1981]. The safest and most inexpensive of these methods is by projection, in which a pinhole or small opening is used to cast the image of the Sun on a screen placed a half-meter or more beyond the opening. Projected images of the Sun may even be seen on the ground in the small openings created by interlacing fingers, or in the dappled sunlight beneath a leafy tree. Binoculars can also be used to project a magnified image of the Sun on a white card, but you must avoid the temptation of using these instruments for direct viewing.

The Sun can be viewed directly only when using filters specifically designed for this purpose. Such filters usually have a thin layer of aluminum, chromium or silver deposited on their surfaces that attenuates ultraviolet, visible, and infrared energy. One of the most widely available filters for safe solar viewing is a number 14 welder’s glass, available through welding supply outlets. More recently, aluminized mylar has become a popular, inexpensive alternative. Mylar can easily be cut with scissors and adapted to any kind of box or viewing device. A number of sources for solar filters are listed below. No filter is safe to use with any optical device (i.e. – telescope, binoculars, etc.) unless it has been specifically designed for that purpose. Experienced amateur and professional astronomers may also use one or two layers of completely exposed and fully developed black-and-white film, provided the film contains a silver emulsion. Since all developed color films lack silver, they are always unsafe for use in solar viewing.

Unsafe filters include color film, some non-silver black and white film, medical x-ray films with images on them, smoked glass, photographic neutral density filters and polarizing filters. Solar filters designed to thread into eyepieces which are often sold with inexpensive telescopes are also dangerous. They should not be used for viewing the Sun at any time since they often crack from overheating. Do not experiment with other filters unless you are certain that they are safe. Damage to the eyes comes predominantly from invisible infrared wavelengths. The fact that the Sun appears dark in a filter or that you feel no discomfort does not guarantee that your eyes are safe. Avoid all unnecessary risks. Your local planetarium or amateur astronomy club is a good source for additional information.

In spite of these precautions, the total phase (and only the total phase) of an eclipse can and should be viewed without filters. It is crucial that you know when to take off and put back on your glasses; see Eye safety during a total solar eclipse

Total Eclipse Viewing Events (source: wkipedia), below:

Oregon

Idaho

Wyoming

  • Casper, Wyoming – The Astronomical League, an alliance of amateur astronomy clubs, will hold its annual Astrocon conference, and there will be other public events, called Wyoming Eclipse Festival 2017.

Nebraska

Missouri

Illinois

Kentucky

Tennessee

North Carolina

Georgia

  • Rabun County, Georgia – Multiple events occur across Rabun County, including the OutASight Total Solar Eclipse Viewing Party with astronomers from Georgia State University. Other events will be held at Tallulah Gorge State Park, Black Rock Mountain State Park, and other locations in the county.

South Carolina

Viewing from outside the United States

Canada

A partial eclipse will be visible across the width of Canada, ranging from 89% in Victoria, British Columbia to 11% in Resolute, Nunavut.

Central America, Mexico, Caribbean islands

A partial eclipse will be visible from Central America, Mexico, and the Caribbean islands.

Europe

The boundaries of the sunset partial eclipse in Western Europe. Calculation with EclipseDroid with atmospheric refraction.

In northwestern Europe, the eclipse will only be visible as a partial eclipse, in the evening or at sunset. Only Iceland, Ireland and Scotland will see the eclipse from beginning to end; in the rest of the UK, Norway, the Netherlands, Belgium, France, Spain and Portugal, sunset will occur before the end of the eclipse. In Germany, the beginning of the eclipse will be potentially visible just at sunset only in the extreme northwest of the country. In all regions east of the orange line in the map, the eclipse will be invisible.

Online Viewing Events

 

Gathered, written, and posted by Windermere Sun-Susan Sun Nunamaker
More about the community at www.WindermereSun.com

Any comments, suggestions, concerns regarding this post will be welcomed at info.WindermereSun@gmail.com

 

We Need Fair Value of Solar

 

~Let’s Help One Another~

[mc4wp_form id=”12402″]

Please also get into the habit of checking at these sites below for more on solar energy topics:

www.sunisthefuture.net

www.kiva.org/team/sunisthefuture

www.facebook.com/sunisthefuture

www.pinterest.com/sunisthefuture

www.youtube.com/user/sunisthefuture

www.cafepress.com/sunisthefuture

Google+

Windermere Sun website Header small

Share
19 March

Solar Eclipse of March 20, 2015 (The Eclipse starts at 07:41 UTC and Ends at 11:50 UTC or 2:41 A.M.-6:50 A.M. EST)

Share

Dear Friends, Visitors/Viewers/Readers,

Partial & Annular Solar Eclipse (May 20,2012, CC attribution: Brocken Inaglory)

Partial & Annular Solar Eclipse (May 20,2012, CC attribution: Brocken Inaglory)

(Please click on red links & note magenta)

It’s a Total Solar Eclipse in the Faroe Islands and Svalbard (Norway), and a Partial Solar Eclipse in Europe, northern and eastern Asia and northern and western Africa. The eclipse starts at 07:41 UTC and ends at 11:50 UTC on March 20, 2015. UTC stands for Universal Coordinated Time.

Historical records  have shown that solar eclipses were viewed as omens that brings about death and destructions. Therefore, it is understandable that many ancient civilizations tried to understand and predict this celestial phenomenon. Babylonians and ancient Chinese were able to predict solar eclipses as early as 2500 B.C. The word eclipse comes from ekleipsis, the ancient Greek word for being abandoned. The Chinese legend has it that two astrologers, Hsi and Ho, were executed for failing to predict the solar eclipse of Oct. 22, 2134 B.C.E. (because solar eclipse is associated with the health and success of the Emperor and not predicting one means placing the Emperor in danger). Henceforth, the solar eclipse of Oct. 22, 2134, B.C.E. was the oldest solar eclipse ever recorded in human history.  Babylonians, also believing in the omens associated with solar eclipse, would seat substitute kings during solar eclipses so that these temporary kings would face the anger of the Gods instead of the real king. On the other hand, a solar eclipse in 585 B.C.E stopped the war between the Lydians and Medes, who saw the dark skies as a sign to make peace with each other.

As seen from the Earth, a solar eclipse is a type of eclipse that occurs when the Moon passes between the Sun and Earth, and the Moon fully or partially blocks (“occults“) the Sun. This can happen only at new moon, when the Sun and the Moon are in conjunction as seen from Earth in an alignment referred to as syzygy. In a total eclipse, the disk of the Sun is fully obscured by the Moon. In partial and annular eclipses, only part of the Sun is obscured.

Partial Solar Eclipse of Oct. 23, 2014 (CC -tomruen) Minneapolis 5-36pm_Ruen1

Partial Solar Eclipse of Oct. 23, 2014 (CC -tomruen) Minneapolis 5-36pm_Ruen1

Annular Solar Eclipse (Middlegate,_Nevada, May 20,_2012) (CC-Smrgeog)

Annular Solar Eclipse (Middlegate,_Nevada, May 20,_2012) (CC-Smrgeog)

Solar eclipse 1999 4 NR ( CC-attribution Luc Viatour : www.Lucnix.be)

Total Solar eclipse 1999 4 NR ( CC-attribution Luc Viatour : www.Lucnix.be)

 

 

 

 

 

 

 

 

 

 

 

 

If the Moon were in a perfectly circular orbit, a little closer to the Earth, and in the same orbital plane, there would be total solar eclipses every single month. However, the Moon’s orbit is inclined (tilted) at more than 5 degrees to the Earth’s orbit around the Sun (see ecliptic), so its shadow at new moon usually misses Earth. Earth’s orbit is called the ecliptic plane as the Moon’s orbit must cross this plane in order for an eclipse (both solar as well as lunar) to occur. In addition, the Moon’s actual orbit is elliptical, often taking it far enough away from Earth that its apparent size is not large enough to block the Sun totally. The orbital planes cross each other at a line of nodes resulting in at least two, and up to five, solar eclipses occurring each year; no more than two of which can be total eclipses. However, total solar eclipses are rare at any particular location because totality exists only along a narrow path on the Earth’s surface traced by the Moon’s shadow or umbra.

Since looking directly at the Sun can lead to permanent eye damage or blindness (unless the UV index is between 0 to 1), special eye protection or indirect viewing techniques are used when viewing a solar eclipse. It is technically safe to view only the total phase of a total solar eclipse with the unaided eye and without protection; however, this is a dangerous practice, as most people are not trained to recognize the phases of an eclipse, which can span over two hours while the total phase can only last up to 7.5 minutes for any one location. People referred to as eclipse chasers or umbraphiles will travel to remote locations to observe or witness predicted central solar eclipses.

There are four types of solar eclipses:

  • A total eclipse occurs when the dark silhouette of the Moon completely obscures the intensely bright light of the Sun, allowing the much fainter solar corona to be visible. During any one eclipse, totality occurs at best only in a narrow track on the surface of Earth.
  • An annular eclipse occurs when the Sun and Moon are exactly in line, but the apparent size of the Moon is smaller than that of the Sun. Hence the Sun appears as a very bright ring, or annulus, surrounding the dark disk of the Moon.
  • A hybrid eclipse (also called annular/total eclipse) shifts between a total and annular eclipse. At certain points on the surface of Earth it appears as a total eclipse, whereas at other points it appears as annular. Hybrid eclipses are comparatively rare.
  • A partial eclipse occurs when the Sun and Moon are not exactly in line and the Moon only partially obscures the Sun. This phenomenon can usually be seen from a large part of the Earth outside of the track of an annular or total eclipse. However, some eclipses can only be seen as a partial eclipse, because the umbra passes above the Earth’s polar regions and never intersects the Earth’s surface.Partial eclipses are virtually unnoticeable, as it takes well over 90% coverage to notice any darkening at all. Even at 99% it would be no darker than civil twilight.<http://www.heliodyssey.org/eclipse_facts.html>

The diagrams to the right below shows the alignment of the Sun, Moon and Earth during a solar eclipse.

Geometry of a Total Solar Eclipse

Geometry of a Total Solar Eclipse

The dark gray region between the Moon and Earth is the umbra, where the Sun is completely obscured by the Moon. The small area where the umbra touches Earth’s surface is where a total eclipse can be seen. The larger light gray area is the penumbra, in which a partial eclipse can be seen. An observer in the antumbra, the area of shadow beyond the umbra, will see an annular eclipse.

 

(some parts are taken from wikipedia)

Remember not to look directly at the Sun on Solar Eclipse Day, March 20, 2015 between 07:41 UTC and Ends at 11:50 UTC.

~have a bright and sunny day~

Gathered, written, and posted by sunisthefuture-Susan Sun Nunamaker

Any of your comments or suggestions will be welcomed via sunisthefuture@gmail.com“”.

Please also get into the habit of checking at these sites  below for more on solar energy topics: www.sunisthefuture.net

www.youtube.com/user/sunisthefuture

www.kiva.org/team/sunisthefuture

www.facebook.com/sunisthefuture

www.pinterest.com/sunisthefuture

HTML adl

Google+

Share

Copyright © 2011 · Susan Sun Nunamaker All Rights Reserved · Sunisthefuture.net