Total Solar Eclipse on August 21, 2017


Dear Friends, Visitors/Viewers/Readers,

This is a repost from one of our sister publications, Windermere Sun.

(Please click on red links & note magenta)

You can watch the Total Solar Eclipse Event from:

Total Solar Eclipse observed from USA on Aug. 21, 2017, with the help of NASA (presented at

Total Solar Eclipse (presented at

Map of the Total Solar Eclipse of Aug. 21, 2017 (Attribution: Wolfgang Strickling, presented at

Chart for Solar Eclipse (Attribution: Fred Espenak of NASA GSFC, presented at

Diamond Ring of the Total Solar Eclipse, last bit of corona ring and last flash of the sun give us the “diamond ring” effect (presented at , with the help of NASA)

Diamond Ring of the Total Solar Eclipse, last bit of corona ring and last flash of the sun give us the “diamond ring” effect (presented at , with the help of NASA)

Windermere Blue Sunset (credit: Windermere Sun-Susan Sun Nunamaker)
(Please click on red links & note magenta)

You can watch the Total Solar Eclipse Event from:

Did you drive or fly to one of the cities along the route for observing total solar eclipse? Did you avoid the crowd by watching live stream for the event, or were you simply oblivious of the Total Solar Eclipse event today? There were so many people trying to reserve for flights to one of the cities along the route of total solar eclipse above that a coach plane ticket between DFW (Dallas Fort Worth) to Nashville costed $6000 last week. Hotel rooms were quickly running out that all of the hotel rooms along this route were fully booked last week that the last single room was going for $6000 for 4 nights at Oregon State University area. This is the only reason that I am reporting the event from Florida rather than Oregon State University today. The next total solar eclipse in the USA will be on April 8, 2024, only 2422 days away. The next total solar eclipse outside of the USA will be on July 2, 2019, with the path of totality running through South American countries such as Chile and Argentina, according to NASA. If you missed today’s event, perhaps you’ll be interested in one of these two future events.

Historically, some of the total solar eclipses at:

  • October 22, 2134 B.C.: one of the earliest recorded solar eclipse appeared in Shu Ching, an ancient Chinese book of documents. The ancient Chinese believed that a solar eclipse was the result of a large dragon eating the Sun. It was the job of two royal astronomers Hsi and Ho to predict such events so that people could prepare bows and arrows to fend off the dragon. But Hsi and Ho shirked their duties and got drunk, so they were beheaded by the emperor.
  • May 28, 585 B.C.: A total solar eclipse brought about an unexpected ceasefire between two warring nations, the Lydians and the Medes, fighting for control of Anatolia (modern day Turkey) for five years, according to ancient Greek historian Herodotus. During the Battle of Halys, aka Battle of the Eclipse, the sky suddenly turned dark as the sun disappeared behind the moon. Interpreting this inexplicable phenomenon as a sign that the gods wanted the conflict to end, the soldiers put down their weapon and negotiated for a truce.
  • 29-32 A.D.: Christian gospels say the sky darkened after the crucifixion of Jesus. It is possible that the event may have coincided with a solar eclipse. Historians have tried to pinpoint the death of Jesus, using astronomical records of solar eclipse in the years 29 C.E. or 32 C.E.
  • May 5, 840: Louis the Pious, the third son of Charlemagne, inherited a vast empire in what is modern day France after his father died in 814. His reign was marked by dynastic crisis and rivalry between his sons. Being a deeply religious man, Louis became terrified of punishment from God after witnessing a solar eclipse. According to the legend, he died of fright shortly afterward.
  • May 29, 1919: Sir Arthur Eddington tested Albert Einstein’s theory of general relativity during a total solar eclipse. Einstein had theorized that massive objects caused distortions in space and time. Eddington confirmed that starlight bent around the sun by measuring the position of certain stars relative to the eclipse.


A total solar eclipse occurs when the Moon completely covers the Sun’s disk, as seen in this 1999 solar eclipse. Solar prominences can be seen along the limb (in red) as well as extensive coronal filaments.(Photo Attribution: I, Luc Viatour, Presented at:


Chart for Solar Eclipse (Attribution: Eclipse Predictions by Fred Espenak, NASA’s GSFC, Presented at:

Map of Solar Eclipse (presented at:

Map of the Solar Eclipse 2017 USA (created with Eclipse 2017 Android App, Geodata from OpenStreetMap (Attribution: Wolfganag Strickling, Presented at:

Windermere Blue Sunset (credit: Windermere Sun-Susan Sun Nunamaker)

(Please click on red links & note magenta)

How many of you had “observing a Total Solar Eclipse” on your bucket list? It was in totality only within a band across the entire contiguous United States ( covering: Oregon, Idaho, Montana, Wyoming, Nebraska, Kansas, Iowa, Missouri, Illinois, Kentucky, Tennessee, Georgia, North Carolina, South Carolina). The last time a total solar eclipse was visible across the entire contiguous United States was during the June 8, 1918 eclipse.

Map of the Solar Eclipse 2017 USA (created with Eclipse 2017 Android App, Geodata from OpenStreetMap (Attribution: Wolfganag Strickling, Presented at:, covering: Oregon, Idaho, Montana, Wyoming, Nebraska, Kansas, Iowa, Missouri, Illinois, Kentucky, Tennessee, Georgia, North Carolina, South Carolina

A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon’s apparent diameter is larger than the Sun’s, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth’s surface, with the partial solar eclipse visible over a surrounding region thousands of kilometers wide. This eclipse is the 22nd of the 77 members of Saros series 145, which also produced the solar eclipse of August 11, 1999. Members of this series are increasing in duration. The longest eclipse in this series will occur on June 25, 2522 and last for 7 minutes and 12 seconds.

The total eclipse will have a magnitude of 1.0306 and will be visible from a narrow corridor through the United States. It will be first seen from land in the US shortly after 10:15 a.m. PDT at Oregon’s Pacific coast, and then it will progress eastward through Salem, OR, Casper, WY, Lincoln, NE, Kansas City, Nashville, TN, Columbia, SC, and finally Charleston, SC. Total Solar Eclipse will darken skies all the way from Oregon to South Carolina, along a stretch of land about 70 miles (113 kilometers) wide. People who descend upon this “path of totality” for the big event are in for an unforgettable experience. A partial eclipse will be seen for a greater time period, beginning shortly after 9:00 a.m. PDT along the Pacific Coast of Oregon.

The longest duration of totality will be 2 minutes 41.6 seconds at about 37°35′0″N 89°7′0″W in Giant City State Park, just south of Carbondale, Illinois, and the greatest extent (width) will be at 36°58′0″N 87°40′18″W near the village of Cerulean, Kentucky, located in between Hopkinsville, KY and Princeton, KY. This will be the first total solar eclipse visible from the Southeastern United States since the solar eclipse of March 7, 1970, which was only visible from Florida.



A partial solar eclipse will be seen from the much broader path of the Moon‘s penumbra, including all of North America, northern South America, Western Europe, and some of Africa.

The August 2017 eclipse will be the first with a path of totality crossing the US’s Pacific coast and Atlantic coast since 1918. Also, its path of totality makes landfall exclusively within the United States, making it the first such eclipse since the country’s independence in 1776. (The path of totality of the eclipse of June 13, 1257, was the last to make landfall exclusively on lands currently part of the US.

If you are interested in observing this event (total Solar Eclipse), below, in italics, is excerpt from “Eye Safety During Solar Eclipses” from NASA:

The Sun can be viewed safely with the naked eye only during the few brief seconds or minutes of a total solar eclipse. Partial eclipses, annular eclipses, and the partial phases of total eclipses are never safe to watch without taking special precautions. Even when 99% of the Sun’s surface is obscured during the partial phases of a total eclipse, the remaining photospheric crescent is intensely bright and cannot be viewed safely without eye protection [Chou, 1981; Marsh, 1982]. Do not attempt to observe the partial or annular phases of any eclipse with the naked eye. Failure to use appropriate filtration may result in permanent eye damage or blindness!

Generally, the same equipment, techniques and precautions used to observe the Sun outside of eclipse are required for annular eclipses and the partial phases of total eclipses [Reynolds & Sweetsir, 1995; Pasachoff & Covington, 1993; Pasachoff & Menzel, 1992; Sherrod, 1981]. The safest and most inexpensive of these methods is by projection, in which a pinhole or small opening is used to cast the image of the Sun on a screen placed a half-meter or more beyond the opening. Projected images of the Sun may even be seen on the ground in the small openings created by interlacing fingers, or in the dappled sunlight beneath a leafy tree. Binoculars can also be used to project a magnified image of the Sun on a white card, but you must avoid the temptation of using these instruments for direct viewing.

The Sun can be viewed directly only when using filters specifically designed for this purpose. Such filters usually have a thin layer of aluminum, chromium or silver deposited on their surfaces that attenuates ultraviolet, visible, and infrared energy. One of the most widely available filters for safe solar viewing is a number 14 welder’s glass, available through welding supply outlets. More recently, aluminized mylar has become a popular, inexpensive alternative. Mylar can easily be cut with scissors and adapted to any kind of box or viewing device. A number of sources for solar filters are listed below. No filter is safe to use with any optical device (i.e. – telescope, binoculars, etc.) unless it has been specifically designed for that purpose. Experienced amateur and professional astronomers may also use one or two layers of completely exposed and fully developed black-and-white film, provided the film contains a silver emulsion. Since all developed color films lack silver, they are always unsafe for use in solar viewing.

Unsafe filters include color film, some non-silver black and white film, medical x-ray films with images on them, smoked glass, photographic neutral density filters and polarizing filters. Solar filters designed to thread into eyepieces which are often sold with inexpensive telescopes are also dangerous. They should not be used for viewing the Sun at any time since they often crack from overheating. Do not experiment with other filters unless you are certain that they are safe. Damage to the eyes comes predominantly from invisible infrared wavelengths. The fact that the Sun appears dark in a filter or that you feel no discomfort does not guarantee that your eyes are safe. Avoid all unnecessary risks. Your local planetarium or amateur astronomy club is a good source for additional information.

In spite of these precautions, the total phase (and only the total phase) of an eclipse can and should be viewed without filters. It is crucial that you know when to take off and put back on your glasses; see Eye safety during a total solar eclipse

Two spectacular events signal the boundaries of totality: appearance of the diamond effect and Baily’s beads.

Diamond Ring of the Total Solar Eclipse, last bit of corona ring and last flash of the sun give us the “diamond ring” effect (presented at , with the help of NASA)

  • Diamond Ring: it is a product of the final moments of the pre-totality partial phases and their post-totality resurgence.
  • Baily’s Beads: Sir Edmund Halley is credited with observing the first Baily’s beads during the eclipse of April 22, 1715. They were also observed by Maclaurin from Edinburgh during the annular eclipse of March 1, 1737 and by Williams from Revolutionary War America on October 27, 1780 from just outside of the totality. But it was Francis Baily’s widely disseminated description of the phenomenon during the annular eclipse of May 15, 1836, that led to their bearing his name thereafter. It was explained by Baily that shortly before second contact of a total eclipse, the opposing horns of the slender crescent sun begin to converge on one another. At the same time, the tenuous solar atmosphere becomes visible against the darkening sky, shining out around the edge of the moon where the sun has already been covered. The combination of this “ring” of light and the single brilliant “diamond” of sunlight where the horns are converging creates a most striking appearance, the diamond ring. The effect lasts for a very short time. Soon the horns of the solar crescent close completely, and the diamond ring begins to break up, to be replaced by an array of brilliant beads of sunlight caused by the sun shining through valleys and depressions on the moon’s leading limb.


Total Eclipse Viewing Events (source: wkipedia), below:




  • Casper, Wyoming – The Astronomical League, an alliance of amateur astronomy clubs, will hold its annual Astrocon conference, and there will be other public events, called Wyoming Eclipse Festival 2017.






North Carolina


  • Rabun County, Georgia – Multiple events occur across Rabun County, including the OutASight Total Solar Eclipse Viewing Party with astronomers from Georgia State University. Other events will be held at Tallulah Gorge State Park, Black Rock Mountain State Park, and other locations in the county.

South Carolina

Viewing from outside the United States


A partial eclipse will be visible across the width of Canada, ranging from 89% in Victoria, British Columbia to 11% in Resolute, Nunavut.

Central America, Mexico, Caribbean islands

A partial eclipse will be visible from Central America, Mexico, and the Caribbean islands.


The boundaries of the sunset partial eclipse in Western Europe. Calculation with EclipseDroid with atmospheric refraction.

In northwestern Europe, the eclipse will only be visible as a partial eclipse, in the evening or at sunset. Only Iceland, Ireland and Scotland will see the eclipse from beginning to end; in the rest of the UK, Norway, the Netherlands, Belgium, France, Spain and Portugal, sunset will occur before the end of the eclipse. In Germany, the beginning of the eclipse will be potentially visible just at sunset only in the extreme northwest of the country. In all regions east of the orange line in the map, the eclipse will be invisible.

Online Viewing Events


Gathered, written, and posted by Windermere Sun-Susan Sun Nunamaker
~have a bright and sunny day~

Any comments, suggestions, concerns regarding this post will be welcomed at

Gathered, written, and posted by sunisthefuture-Susan Sun Nunamaker
Please also get into the habit of checking at these sites below for more on solar energy topics:


Windermere Sun website Header small



Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

One Response to “Total Solar Eclipse on August 21, 2017”

  1. Free proxy lists Says:

    Hey! This is my first comment here so I just wanted to give a quick shout out and tell you I truly enjoy reading your posts. Can you recommend any other blogs/websites/forums that go over the same topics? Thanks for your time!

Leave a Reply

You must be logged in to post a comment.

Copyright © 2011-2018 · Susan Sun Nunamaker All Rights Reserved ·